Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1010249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330238

RESUMO

Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost-benefit seed image analysis methods, the free software "SmartGrain" and the fully automated commercially available instrument "Cgrain Value™" by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R 2 = 0.52 compared with SmartGrain for which R 2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R 2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.

2.
Plant Methods ; 18(1): 30, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292072

RESUMO

BACKGROUND: High-throughput plant phenotyping (HTPP) methods have the potential to speed up the crop breeding process through the development of cost-effective, rapid and scalable phenotyping methods amenable to automation. Crop disease resistance breeding stands to benefit from successful implementation of HTPP methods, as bypassing the bottleneck posed by traditional visual phenotyping of disease, enables the screening of larger and more diverse populations for novel sources of resistance. The aim of this study was to use HTPP data obtained through proximal phenotyping to predict yellow rust scores in a large winter wheat field trial. RESULTS: The results show that 40-42 spectral vegetation indices (SVIs) derived from spectroradiometer data are sufficient to predict yellow rust scores using Random Forest (RF) modelling. The SVIs were selected through RF-based recursive feature elimination (RFE), and the predicted scores in the resulting models had a prediction accuracy of rs = 0.50-0.61 when measuring the correlation between predicted and observed scores. Some of the most important spectral features for prediction were the Plant Senescence Reflectance Index (PSRI), Photochemical Reflectance Index (PRI), Red-Green Pigment Index (RGI), and Greenness Index (GI). CONCLUSIONS: The proposed HTPP method of combining SVI data from spectral sensors in RF models, has the potential to be deployed in wheat breeding trials to score yellow rust.

3.
Front Plant Sci ; 12: 705006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512690

RESUMO

Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...